Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales

نویسندگان

  • Liang Zhai
  • Bin Zou
  • Xin Fang
  • Yanqing Luo
  • Neng Wan
  • Shuang Li
چکیده

Though land use regression (LUR) models have been widely utilized to simulate air pollution distribution, unclear spatial scale effects of contributing characteristic variables usually make results study-specific. In this study, LUR models for PM2.5 in Houston Metropolitan Area, US were developed under scales of 100 m, 300 m, 500 m, 800 m, and 1000–5000 m with intervals of 500 m by employing the idea of statistically optimized analysis. Results show that the annual average PM2.5 concentration in Houston was significantly influenced by area ratios of open space urban and medium intensity urban at a 100 m scale, as well as of high intensity urban at a 500 m scale, whose correlation coefficients valued −0.64, 0.72, and 0.56, respectively. The fitting degree of LUR model at the optimized spatial scale (adj. R2 = 0.78) is obviously better than those at any other unified spatial scales (adj. R2 ranging from 0.19 to 0.65). Differences of PM2.5 concentrations produced by LUR models with best-, moderate-, weakest fitting degree, as well as ordinary kriging were evident, while the LUR model achieved the best cross-validation accuracy at the optimized spatial scale. Results suggested that statistical based optimized spatial scales of characteristic variables might possibly ensure the performance of LUR models in mapping PM2.5 distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China

Fine particulate matter (PM2.5) pollution has become one of the greatest urban issues in China. Studies have shown that PM2.5 pollution is strongly related to the land use pattern at the micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate PM2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM2.5 pollution. This ...

متن کامل

A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology.

Many cohort studies in environmental epidemiology require accurate modeling and prediction of fine scale spatial variation in ambient air quality across the U.S. This modeling requires the use of small spatial scale geographic or "land use" regression covariates and some degree of spatial smoothing. Furthermore, the details of the prediction of air quality by land use regression and the spatial...

متن کامل

Performance comparison of LUR and OK in PM2.5 concentration mapping: a multidimensional perspective

Methods of Land Use Regression (LUR) modeling and Ordinary Kriging (OK) interpolation have been widely used to offset the shortcomings of PM2.5 data observed at sparse monitoring sites. However, traditional point-based performance evaluation strategy for these methods remains stagnant, which could cause unreasonable mapping results. To address this challenge, this study employs 'information ent...

متن کامل

Scale- and Region-Dependence in Landscape-PM2.5 Correlation: Implications for Urban Planning

Under rapid urbanization, many cities in China suffer from serious fine particulate matter (PM2.5) pollution. As the emission sources or adsorption sinks, land use and the corresponding landscape pattern unavoidably affect the concentration. However, the correlation varies with different regions and scales, leaving a significant gap for urban planning. This study clarifies the correlation with ...

متن کامل

Self-Adaptive Revised Land Use Regression Models for Estimating PM2.5 Concentrations in Beijing, China

Heavy air pollution, especially fine particulate matter (PM2.5), poses serious challenges to environmental sustainability in Beijing. Epidemiological studies and the identification of measures for preventing serious air pollution both require accurate PM2.5 spatial distribution data. Land use regression (LUR) models are promising for estimating the spatial distribution of PM2.5 at a high spatia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016